

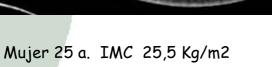
SARCOPENIA: fisiopatología, epidemiología y diagnóstico

Dr. Ferran Masanés Torán Sección de Geriatría Servicio Medicina Interna Instituto Clínico de Medicina y Dermatología Hospital Clínic Barcelona

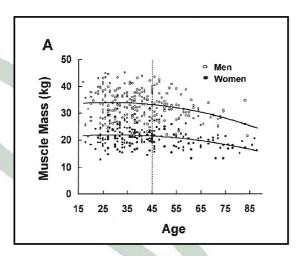
Sarcopenia

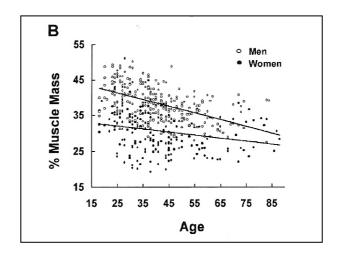
- ·"Sarco": músculo + "penia": pérdida
- ·Pérdida de masa y fuerza muscular que se produce con el proceso fisiológico del envejecimiento
- ·Proceso continuo que afecta a toda la población anciana
- La sarcopenia clínicamente relevante: pérdida > 2 SD en relación a la media de masa muscular en una población de controles jóvenes

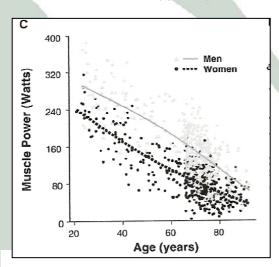


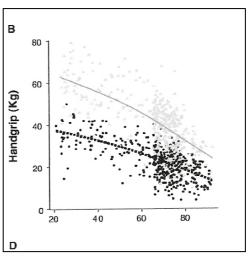


Alteraciones macroscópicas


Mujer 85 a. IMC 26 Kg/m2

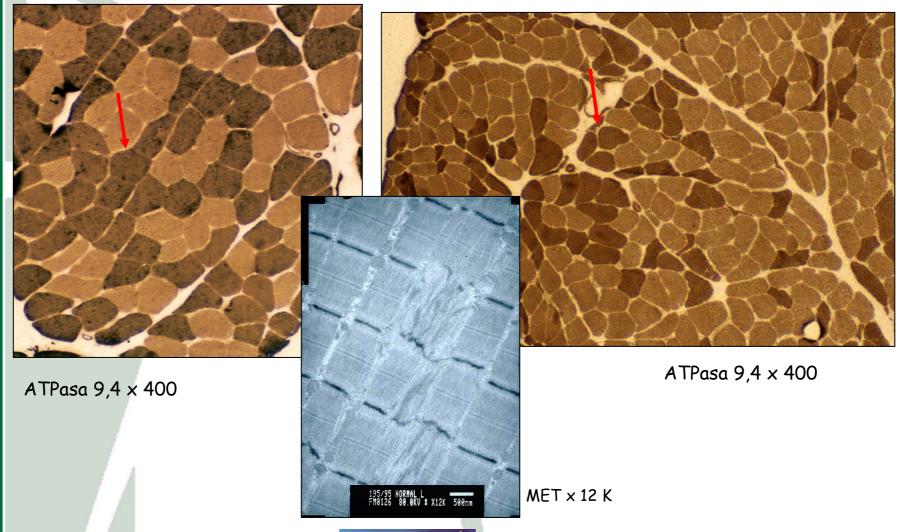

Con el envejecimiento se produce un incremento de la proporción de la grasa corporal (18 - 36% varones y 33%-44% mujeres)



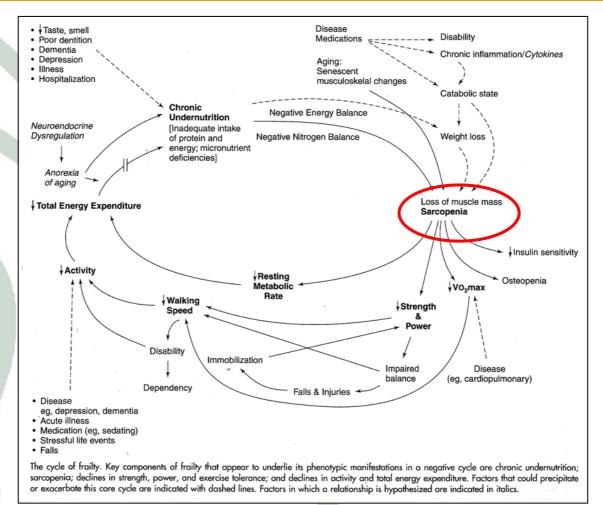


Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr Janssen et al. J Appl Physiol 2000; 89: 81-89

Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia Lauretani F et a. J Appl Physiol 2003; 95: 1851-1860



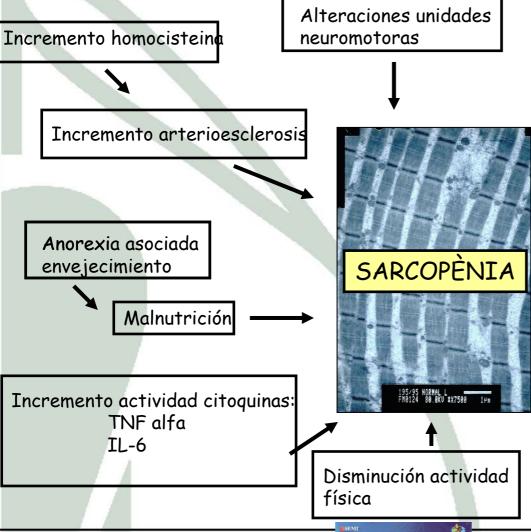
Alteraciones microscópicas

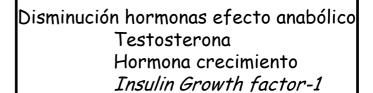


EL CICLO BIOLOGICO DE LA FRAGILIDAD

Fried L, 2003

FISIOPATOLOGIA





Fisiopatología Sarcopenia

Factores genéticos: gen ECA gen miostatina

Modificaciones factores reguladores crecimiento muscular: Factor crecimeinto muscular (GDF8) o Miostatina

Fisiopatología Sarcopenia (I)

- 1. <u>Factores genéticos</u>
- Gen ECA, polimorfismos II y ID asociados a más rendimiento muscular en deportistas y voluntarios sanos
- Gen miostatina, diversos polimorfismos modulan el metabolismo proteico (el polimorfisme K153R es el más común)

Consecuencias disminución actividad ECA

- · Mejora capacidad de resistencia muscular
- Ahorro relativo almacenamiento graso durante el entrenamiento
- · Más eficacia de la acción muscular
- Disminución riesgo para diferentes procesos patológicos: enfermedad coronaria, hipertrofia ventricular
- · Polimorfismo I marcador de baja actividad ECA

Relación polimorfismos gen ECA - músculo

Es el gen más estudiado en relación con la actividad física

En los últimos años han aumentado los estudios a nivel muscular

Más relación con el rendimiento que con la cantidad de masa muscular

- 1. Vulnerabilidad cardiomiopatia asociada genotipo DD
 Fernandez-Sola J, Nicolas JM Oriola J et al. Angiotensin-converting enzyme gene
 polymorphism is associated with vulnerability to alcoholic cardiomyopathy
 Ann Intern Med 2002; 137:321-326
- 2. Mejor rendimiento físico deportistas asociado a genotipo II (ejercicio resistencia)

Jones A, Woods D. Skeletal muscle RAS and exercice performance. Int J Biochem Cell Biol 2003; 35:855-866

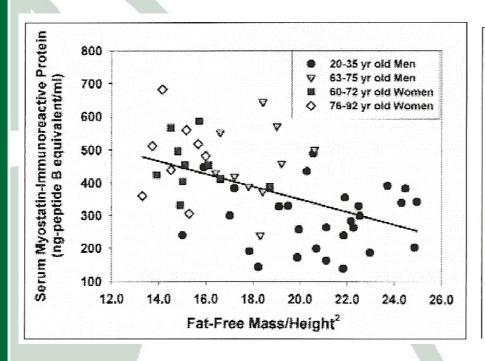
Fisiopatología Sarcopenia (II)

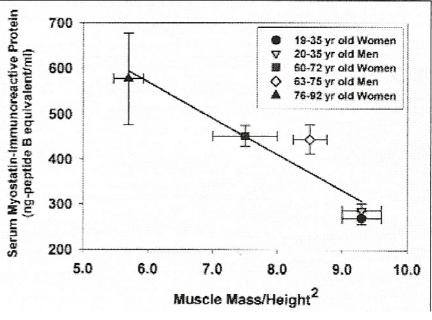
- 2. Factores bioquímicos/inflamatorios:
 - ·Citoquinas con actividad catabólica (IL 6 i TNF)
 - ·GDF 8 o Miostatina proteína que regula negativamente la masa muscular

Factores inflamatorios

- ·El envejecimiento podría estar asociado a un estado inflamatorio subclínico
- ·Probable efecto catabólico directo y efecto anorexígeno
- ·Potenciación con disminución de factores anabólicos (GH, IGF 1)
- ·Citoquinas relacionadas: IL-6 i TNF alfa
- ·Asociación con "wasting"

Miostatina


- ·Factor 8 de crecimiento /diferenciación (GDF-8)
- ·Forma parte del grupo de proteínas conocidas como Transforming growth factor Beta (TGF-beta)
- ·Muy parecida en diversas especies
- ·Proteína que actúa como regulador negativo de la masa muscular esquelética



Yarasheski KE. Et al. Serum myostatin-inmunoreactive protein is increased in 60-92 year old women and men With muscle wasting

J. Nutr Health Aging 2002; 6: 343-348

Fisiopatología Sarcopenia (III)

3. Factores Hormonales:

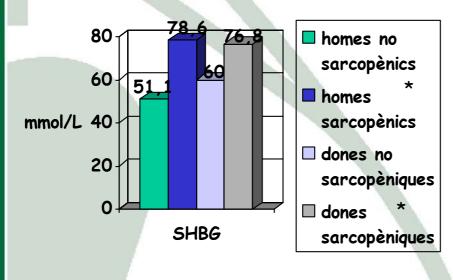
- •Disminución progresiva de **testosterona** en hombres asociada con sarcopenia
- Disminución de estrógenos en mujeres contribuye a una rápida pérdida de masa muscular
- ·Disminución de la hormona de crecimiento y d'IGF-1
- ·Disminución Vitamina D
- Incremento de la secreción adrenal de cortisol

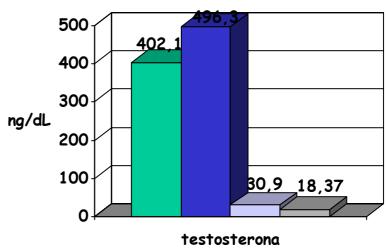
Eje Hormona Crecimiento- IGF 1

- ·Algunos cambios producidos en el envejecimiento tienen similitudes con los producidos en jóvenes con déficit de HC
- ·HC tiene un efecto anabólico sobre el músculo esquelético
- ·La secreción de HC disminuye a lo largo del envejecimiento
- ·Su efecto es directo o mediante IGF-1
- ·La actividad física es un regulador del eje HC-IGF1

Hormonas sexuales

- ·Las hormones sexuales tienen un efecto anabólico bien conocido
- ·Los niveles séricos de testosterona disminuyen con el envejecimiento al mismo tiempo que se incrementa la SHBG
- ·En los varones los niveles de estradiol se mantienen estables y en las mujeres disminuyen
- Se ha relacionado la masa y fuerza muscular con los niveles de testosterona libre en hombres
- ·No relación con los niveles de estrógenos en mujeres





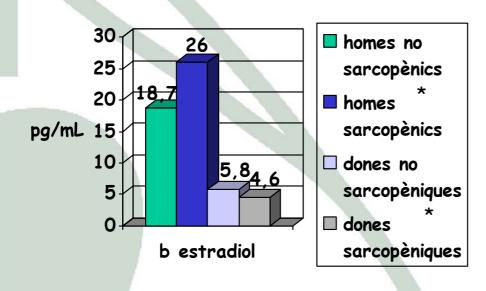
Hormonas sexuales

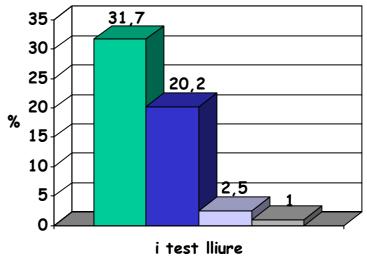
SHBG y testosterona y presencia de sarcopenia

* p< 0,05

Fis 05/0098

* p ns





Hormonas sexuales

B estradiol y índice testosterona libre y presencia de sarcopenia

* p ns

* p< 0,05

Fis 05/0098

Fisiopatología Sarcopenia (IV)

- 4. Factores ambientales:
 - Actividad física, claramente relacionada con la atrofia muscular
 - Malnutrición, su presencia cuantitativa o cualitativa favorece catabolismo negativo y pérdida muscular

Actividad física

- ·Es bien conocido el efecto del ejercicio sobre el músculo esquelético en los deportistas
- Diferente efecto sobre los diferentes tipos de fibras II (contracción rápida) según tipo de ejercicio (rápido/resistencia)
- ·El envejecimiento comporta disminución resistencia muscular
- ·Los ejercicios de resistencia se relacionan con mejora función muscular y incremento de fuerza incluso en persones muy mayores

Aspectos Nutricionales

- ·Diversos factores asociados al envejecimiento comportan una disminución de la ingesta
- De la segunda a la octava década de vida la media de ingesta energética disminuye entre 1200 i 800 kcal/d i también lo hace la ingesta proteica (balance nitrogenado negativo)
- Puede acompañarse de otros factores: deshidratación, sintomatología depresiva, alteraciones inmunitarias, disminución colesterol

EPIDEMIOLOGIA

Datos comparativos:

Grupo de referencia joven

New Mexico

Angers

Taiwan

	-					
	hombres	mujeres	hombres	mujeres	hombres	mujeres
n	107	122	394	388	100	100
Edad	28,7 (5,1)	29,7 (5,9)	30,2 (6,1)	29,2 (6,3)	26,7 (5,7)	27,6 (5,9)
IMC (Kg/m²)	24,6 (3,8)	24,1 (5,4)	23,9 (3)	22,5 (3,4)	23,2 (3,5)	20,6 (2,5)
MM (Kg)	27,3 (3,6)	17,7 (3,7)	32,2 (3,3)	21 (2,5)	32,6 (3,5)	20 (2,2)
IMM (Kg/m²)	8,6 (1,1) < 7,26 Kg/m2	7,3 (0,9) < 5,45 Kg/m2	10,4 (0,9)	7,8 (0,8)	10,9 (1)	7,9 (0,7)

Referencias:

Baumgartner RN, Koehler KM, Gallagher D, et al. Epidemiology of sarcopenia among the elderly in New Mexic. Am J Epidemiol 1998;147:755-763

Tichet J, Vol S, Coxe D, Salle A, Berrut G, Ritz P. Prevalence of sarcopenia in the French senior population. J Nutr Health Aging 2008;12:202-206

Chien M, Huang T, Wu Y. Prevalence of sarcopenia estimated using a bioelectrical impedance analysis prediction equation in community-dwelling elderly people in Taiwan. J Am Geriatr Soc 2008;56:1710-1715

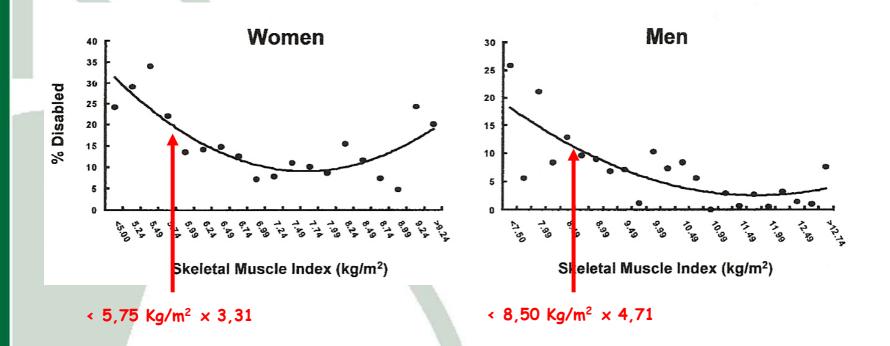
RESULTADOS PROPIOS (I):

Grupo de referencia joven

	hombres	mujeres		
n	110	120		
Edad	28,6 (5,0)	28,2 (6,0)		
IMC (Kg/m²)	24,34 (2,8)	21,96 (2,4)		
MM (Kg)	38,26 (5,2)	26,67 (3,9)		
IMM (Kg/m²)	9,58 (0,63)	7,65 (0,48)		

Sarcopenia: Puntos Corte

IMM (Kg/m2) < 8.31 hombres


IMM (Kg/m2) < 6.68 mujeres

Datos comparativos (II):

Janssen I, Baumgartner RN, Ross R, Rosenberg IH, Roubenoff R. Skeletal muscle cutpoints associated with elevated physical disability rik in older men and women. Am J Epidemiol 2004;159:413-421

Datos comparativos (III):

New Mexico

Angers

Taiwan

	hombres	mujeres	hombres	mujeres	hombres	mujeres
n	426	382	112	106	157	145
Edad	73,6 (5,8)*	73,7 (6,1)*	64,1 (3,8)**	64,7 (3,6)**	76,6 (7)	74,4 (6,4)
IMC (Kg/m²)	25,9 (3,7)	26,2 (4,6)	26,2 (3,1)	25,3 (3,9)	24,4 (3,1)	24,4 (3,7)
MM (Kg)	22,5 (2,6)	14,5 (2,2)	29,4 (3,8)	18,5 (2,2)	26,4 (3,8)	17 (2,7)
IMM (Kg/m²)	7,7 (0,7)	5,9 (0,7)	10,1 (1,1)	7,5 (0,8)	9,8 (1,1)	7,3 (1)
Sarcopenia (%)	18,3/ 36,4	33,3/ 35,9	3,6	2,8	23,6	18,6
The second secon						

* 16 %< 61-70 a.


** Edades 60-78 a.

RESULTADOS PROPIOS (II):

Prevalencia sarcopenia en dos poblaciones de ancianos

Fis 05/0098 i Beca MUTUAM

DIAGNÓSTICO

ANTROPOMETRÍA

PLIEGUE TRICIPITAL

- ·Gran variabilidad
- ·Poco costosa

$$%MG = (0.735 \times \Sigma 2) + 1.0$$


MM (kg) =
$$h \times [(0,0064 \times PCB^2) + (0,0032 \times PCM^2) + (0,0015 \times PCP^2)] + (2,56 \times sexo) + (0,136 \times edad)$$

RNM

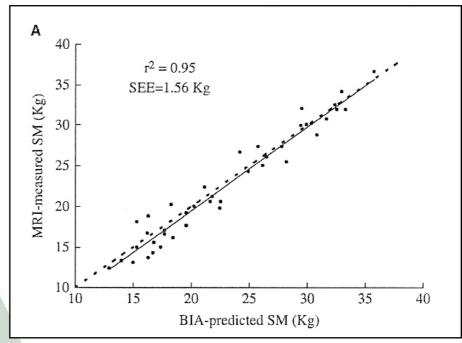
- · A partir de diferentes cortes se realiza una reconstrucción y un calculo de la composición corporal
- ·Gold standard
- ·Coste elevado
- ·Accesibilidad difícil

DEXA (absortiometria dual rayos X)

- ·Misma técnica que la que determina masa ósea
- ·Coste elevado
- ·Accesibilidad difícil
- ·Correlación RNM R²= 0,96

BIOIMPEDÀNCIA

- · Bioimpedancia eléctrica (BIA), mètodo validado para valorar la masa muscular con un coste bajo
- La técnica se basa en la resistencia que ofrecen el agua y los tejidos corporales al paso de una corriente eléctrica, esta resistencia viene determinada por el contendo de agua y de electrolitos
- Se propone como el método más próximo al ideal para investigaciones de campo, porque es portátil, poco exigente en referencia a la cooperación del paciente, con resultados reproducibles y a un bajo coste

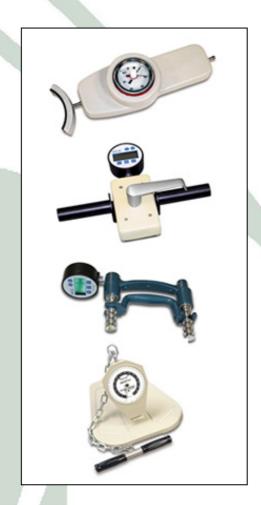


BIOIMPEDANCIA

Figura 2: Determinación de la bioempedancia

Chien MY, Huang TY, Wu YT. Prevalence of sarcopenia estimated using a BIA prediction equation in community-dwelling elderly people In Taiwan

J Am Geriatr Soc 2008;56:1710-1715

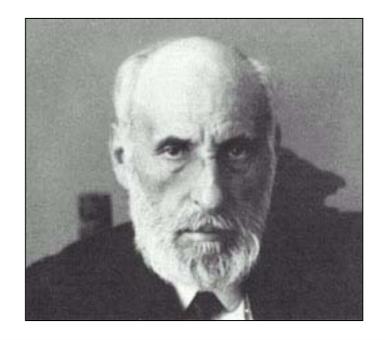


Medición fuerza muscular

- ·Permite valorar fuerza de diferentes grupos musculares
- Coste asequible
- ·Dificultad en ciertos pacientes

CONCLUSIONES

- · La sarcopenia o pérdida de masa y fuerza muscular en el anciano es un marcador clínico de fragilidad
- · La sarcopenia presenta una elevada prevalencia en los ancianos
- · La etiología de la sarcopenia es multifactorial destacando en su desarrollo el papel que ejercen la nutrición y el ejercicio físico
- El diagnóstico de sarcopenia de basa en la cuantificación de la masa (BIA/DEXA) y fuerza muscular


"En suma, se es verdaderamente anciano, psicológica y físicamente, cuando se pierde la curiosidad intelectual, y cuando, con la torpeza de las piernas, coincide la torpeza de la palabra y del pensamiento"

El mundo visto a los ochenta años. Impresiones de

un arteriosclerótico. 1934

Santiago Ramón y Cajal

Muchas gracias por su atención

